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_. Deve!opment of an Experiment for Determining

,_ * The Autoignition Characteristics of Aircraft-T_e Fuels

_ _ " Louis J. Spadaccini

• United Technologies Research Center

_'_iiI SUMMARY

An applied research program was undertaken to develop a critical experiment

capable of determining the autoignition characteristics of aircraft-type fuels :n

premixing/prevaporizing passages at elevated temperatures and pressures. The pro-

m

gram included a comprehensive review of previous autoignition research and was

directed toward design of the experiment, fabrication of the test equi,_ment, and

r_ empirical verification that variables which affect autoignition can be controlled in

m a manner such that quantitative results can be obtained. In particular, the experi-

ment was designed to permit independent variation and evaluation of th_ experimental

variables of pressure, temperature, flow rate and fuel-air r_iu.Performance verification tests consisting of measurements of the ignition delay

times for several lean fuel-air mixture ratios were conducted using Jet-A fuel over

ranges of inlet air temperature and pressure up to 900 K and B0 atm. The test

results were used to quali_ the experimental approach and apparatus for use in

future parametric test programs.

INTRODUCTION

m

The operational characteristics of the combustors in current aircraft gas tur-

bine engines are such that obJectional quantities of air pollutants are emitted over

a significant portion of the engine operating cycle. The aircraft engine exhaust

emissions of primary concern are oxides of nitrogen, carbon monoxide, unburned hydro- :

carbons and smoke. Oxides of nitrogen (NOx) are produced at excessive rates in com- i
bustors when elevated gas temperatures are combined with long reaction-product

, residence times, for example, during engine operation at high power levels.

t
0

J

i

1978008251-004



%

2

_,%_ Significant technical effort has been and is being devoted to reduction of the -_

_] rates of air pollutant emissions from gas turbine engines. In most instances these

:_d efforts involve modifications of the configuration and/or operation of combustors _
_'_: I designed according to conventional concepts. However, projected aviation advances

prompt even greater emissions reductions, especially of N0x, than are probably
'_.-I attainable with current combustor design technology. Therefore, _t appears tilat, if

' detrimental contamination of the atmosphere is to be precluded, improvements in tLe

,' state of the art of combustor design must be achieved through the development of _

_:_ no,,el combustor concepts. A promising concept involves (i) the generation of a ,_

un:formly lean, gaseous fuel-air mixture prior to combustion and (2) a combustior

zone having uniformly low temperature and low species residence time, thereby

achieving the necessary prerequisites to low NOx production rates. However, the
operational conditions of advanced engines are such that it is feared tha _"

tion of the fuel-air mixture may occur in the premixing duct prior to entrance into

the combustor. Data regarding the autoignition characteristics of fuel-air mixtures

at values of temperature and pressure representative of advanced engines do not _
C

exist. Moreover, the existing body of autoignition data does not permit a satisfac-

tory quantitative description of the presumed effects of all the controlling parameters.

Therefore, an applied research program was undertaken to design and develop a
C

critical experiment capable of determining the autoignition characteristics of

aircraft-type fuels in air over a variety of conditions, including those representa-

tive of advanced g_s turbine combustors. The program comprised analytical and exper-

imental efforts directed toward (i) development of a comprehensive knowledge and _

understanding of previous autoignition research as a basis for formulation of a

critical experiment, (2) design of the experiment and fabrication of the test equip-

ment, and (3) experimental verification of the approach and apparatus through a

limited number of tests with ASTM Jet-A fuel over ranges of inlet air temperature

and pressure up to 900 K and 30 atm, respectively.

z

REVIEW OF AUTOIGNITION LITERATURE

The spontaneous ignition characteristics of hydrocarbon fuels in air have been

a subject of investigation for many years; however, none of the previous investlga-

----_ tors has been completely successful in isolating and evaluating each of the experl-
\mental variables in a controlled manner and over ranges representatiw of those _\

R encountered in advanced gas turbine engines. Consequently, a thorough examination

of past efforts in this area was undertahen in order to properly define a critical

experiment that determines the effects of all the known or suspected variables on

autoignition. A survey of the current comLustion literature compiled in the

_ Engineering Index, NTIS, Chemical Abstracts, Physics Abstracts, and Mechanical

Engineering Abstracts was performed to obtain a more complete background o£ previous

2
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!iautoignitionresercheoceedDOOInfotionetrievelServiesed_jm to perform a rapid and cost-effectlve computer search of over three million citations

_i!I _ and abstracts from technical reports, Journal articles and other technical publica-

!I tions. The survey produced a total of i073 citations, of which approximately [0

_i_ were Judged to be relevant to the present program. This review (I) presents a

' phenomenological description of the autoignition process, (2) summarizes the previous

° experimental techniques, indicates their areas of applicability, relative advantages

_i! and limitations, and (3) provides insight into some of the reasons for variationsintheexisting test data.Wentzel (Ref. 49)* was one of the first investigators to conclude that the

ignition delay time comprises a series of overlapping physical and chemical processes.

_le physical delay is the time required for droplet formation, heating, vaporization,

diffusion and mixing with the air. The chemical delay is the time elapsed from the

instant a combustible _dxture has been formed until the appearance of a hot flame;

it involves the kinetics of preflame reactions which result in the decomposition of

high molecular w_ight hydrocarbon species and the formation of critical concentrations

of intermediate free-radial species, so called ignition precursors. It is believed

that the chemical processes start immediately upon the introduction of fuel and air

I in a combustion chamber; however, initially they proceed at a very slow rate and con-

c sequently the mass of fuel vapor which undergoes chemical reaction is very small

compared to the m_s necessary to cause a detectable temperature or pressure rise dueto combustion. Therefore, the very early stages of the preignition processes are

!i__ _ probably dominated by the physical processes and the late stages by the chemical

processes. The relative effects of the physical and chemical processes on the

magnitude of the ignition delay have been studied by many investigators (e.g., Refs.

39, 43 and 48), and it has been concluded that in conventional combustion systems

(e.g., gas turbine and diesel engines) the chemical delay is typically the more

• important of the two periods. Ample evidence has been derived from theoretical

analyses and experimental investigations to indicate that chemical reaction is the

rate controlling _ctor for autoignition. For example, Henein (Ref. 43) has calculated

the time required to form a combustible mixture at the droplet surface (i.e., droplet

heating, evaporation and mass transfer) for conditions representative of the start

_ of injection in an open-chamber diesel engine and concluded that it is very short
comparedto the ignition delay. In addition, several investigators (Refs. 44, 65

and 66) have measured longer ignition delay times for certain of the relatively high-

volatility fuels than for diesel fuel and distillate fuel oil. There is no doubt

that the rate of the physical processes increase with the fuel volatility; therefore,

if physical processes control the ignition delay, one would expect the opposite

" result. Also, it is a well known fact that the addition of small amounts of tetraethyl

lead to gasoline significantly affects the ignition delay without having any known

effect on the physical delay.

"References are included in a bibliography of relevant autoignition research at the

end of report.
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In many instances the chemical portion of the ignition de]ay comprises two

stages -- cool flame ignition and hot flame ignition. The cool flame is a rela-

tively low temperature phenomenon (T < 700 K at one atm pressure) which emits a

characteristic pale blue chemiluminescence in the spectral range 3000A to 5000A, •

due exclusively to fluorescence of electronically-excited formaldehyde, amd is not

accompanied by a high heat release. It is chemically distinct and should not be

confused with the "blue" flame which may form in the products of the cool flame and

which results in much higher heat _'elease and flame temperatures in excess of 900 K.

Cool flame reactions occur when organic compounds are heated in the presence of

oxygen and involve the formation of intermediate species such as peroxides and

aldehydes (Ref. ii). No carbon is formed in the products of the cool flame and only

a small fraction of the reactants is consumed. The temperature rise across a cool

flame at one atmosphere pressure is always less than h00 K, and may be as little as

300 K. In comparison, normal hot flame ignitions of hydrocarbon fuels yield temper-

ature rises in excess of 1500 K. Increasing the ambient pressure or the temperature

of the reactants decreases the time required for transition from a cool flame to a

hot flame. A detailed discussion of the mechanisms responsible for the production

of cool flames and two-stage ignition is beyond the scope of this review; however,

an explanation of the general features including, the kinetics and reaction products

is presented in Ref. 9. Cool flames are pertinent to the present investigation

since under certain conditions (temperature, pressure, and reactant species

concentration) sufficient heat is released to initiate a self-accelerating chain

reaction which culminates in autoignition. The existence of cool flames Just prior

to autoignition has been reported by many investigators using different types of

test apparatus. Mullins (Eel. 64) for example, measured the emission spectra of

flames resulting from the injection of liquid kerosene into a stream of high-temper-

ature combustion products. Three stages of combustion were identified. At the

lowest temperature the spectrum consisted only of emission from excited formaldehyde;

at intermediate temperature CH, OH, and strong HCO bands appeared; m_d at the highest

temperatures the normal flame spectrum, C2, CH, and OH appeared. Similar spectral

evidence of preflame reactions have been reported in flat-flame burners, recipro- .,_
eating engine studies and in constant volume bombs (e.g., Refs. 5 and 46).

Autoignition is generally detected by measuring a sudden increase in temperature,

pressure, light emission, or concentration of free radical species. Consequently,

many of the previous investigators differ in their definition of the delay period,

mainly because different phenomena were used to indicate the end of this period. In

addition, they have used many different types of transducers for measuring the igni-

tion delay time. However, differences in the definition of the point at which com-

bustion begins m,d the variation between the types and sensitivities of the transducers

_ used can account for a significant portion of the discrepancy in the reported data.
For example, Henein and Bolt (Ref. 42) concluded that in hlgh-speed direct-injectlon

- diesel engines the pressure rise delay is generally shorter and more reproducible

than the illumination delay. Since there is little doubt that the relative importance #

of the various ignition phenomena and the individual transducer sensitivities will ,_

- vary over the range of fuels and test conditions or interest (e.g., cool flames _re

more difficult to detect than hot flames), inwstigators should strive to make

1978008251-007



._.',;_._'.,, .,.
...._ simultaneous measurements of the illumination, pressure rise, and temperature rise

delay times usillgdifferent_ types of rapid response transducers.

A great variety of equipment and procedures has been used to measure the
' ignition delay of liquid hydrocarbon fuels (see Table i), including constant volume

bombs (Refs. 15 through 32), reciprocating engines (Refs. 39 through 49), and steac
flow test apparatus (Refs. 56 through 68). However, the spontaneous ignition
temperature of a combustible substance is not an absolute property of the substanc,
and, consequently, all spontaneous ignition data need to be interpreted carefully .
the light of the test apparatus and methods used for their determination. Existin:

experimental data are generally dependent on the particular experimental configu-
ration employed and are, therefore, too inconsistent for universal design use. Fo
example, the automotive literature contains numerous accotmts of investigations of_
a,,toignitionin intermittent combustion systems; however, the effects of continuoul

varying pressure, _emperature, velocity and turbulence, and injector spray charact

istics (droplet size and distribution) prevent an unambiguous datermination of theil
influence of any one of these variables because autoignition is a path-dependent
phenomenon. Rapid compression machines lessen, but do not eliminate, the effects c

transients and permit external premixing of high-vapor-pressure fuels. However,
they are not readily adaptable for use with low-vapor-pressure fuels, and transien_
and localized phenomena which stem from nonuniform heating remain a disadvantage.
Heated bomb techniques, on the other hand, usually are limited to low levels of

velocity and turbulence and yield results which are configuration (shape, surface,
o

and volume) and material dependent. In addition, this latter technique usually

requires relatively long fuel-air mixing times and results if:physical delay times
which are much longer than those encountered in conventional spray-type combustion
systems. Shock tube studies are limited by short test times, locaS no_luniformitie!
and usually are restricted to homogeneous gaseous mixtures. In contrast, continuo_

combustion devices permit ample time for measuring and regulating many of the
physical variables of interest prior to spontaneous ignition while providing an

opportunity to minimize those effects more subject to design variation (e.g.,

injector spray characteristics and degree of mixing). Furthermore, they permit a_

accurate simulation of autoignition in many continuous flow combustion devices,
including the gas turbine.

Much of the early autoignition research and, in particular, investigations
ooncerned with evaluating the minimum spontaneous ignition temperature (ignitabili_

Pazard) of a fuel, was conducted using constant volume bombs. With this type of
• apparatus, liquid fuel is usually injected into a cylindrical- or spherical-shaped_

sealed container and the pressure or light emission is continuously monitored.

Consistent with classical ignition theory (Ref. _), autoignition temperatures _,
" determined using this technique decrease with increasing container volume and _'
, decreasing surface area to volume ratio. '_

OFpOOltQUAU_ _,_
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Wolfer (Ref. 30) measured the pressure rise delay for diesel fuel in both

cylindrical and spherical bombs over a range of pressures (8 to h8 atm) and

temperatures (590 to 780 K) and for low air turbulence levels. The shortest d_!ay

time recorded was h5 msec. The data were correlated with an expression for the

delay period as a function of the air pressure and temperature whose gcneral form

is similar to those determined by more recent investigators (Refs. 25, 47 and 66).

T = Kec/T pn

where K, C, and n are constants. He also concluded that, in his apparatus, ignition

teristics.delaywas independent of fuel-air ratio, air turbulence, and fuel injection charac- _!

Starkman (Ref. 29) studied the effect of pressure, temperature, and fuel/air _

ratio on the pressure-rise delay in a CFR diesel engine and in a bomb. The volume _t
of the bomb was equal to the clearance volume of the engine. He found that the

pressure rise delay is reduced by an increase in any of the above factors, and that

it is shorter in the engine than in the bomb.

Hurn, et al., (Refs. 20 and 2_) in two separate investigations studiedthe " i_
effect of pressure, temperature and fuel composition on the pressure-rlse delay

and the factors governing the magnitude of the physical and chemical delays. They

tested several different fuels using a constant volume bomb that was precharged with

one of several different gas mixtures which varied in oxygen concentration. Tests

were conducted over ranges of pressure (19 to 46 atm), temperature (728 to 840 K),

and oxygen concentration (15 to 40 percent). They concluded that for a constant

oxygen partial pressure there is an optimum oxygen concentration that results in a

minimum ignition delay time, and that the physical delay was primarily dependent on

the properties of the ambient gas while the chemical de]_ywas influenced by the

fuel composition.

More recently Kadota, et al. (Ref. 25) used a constant volume bomb to determine

the ignition delay of a single droplet of hydrocarbon fuel. Tests were conducted at

pressures of 1 atm to 41 atm and ambient gas temperatures of 500 K to 975 K. The

shortest delay time measured was approximately 100 msec. Their data were correlated

by an expression similar to Wolfer's (Ref. 30) but which also included the oxygen

concentration as a variable.

x = Kec/T pn_D __

where _ is the oxygen concentration and D is a constant. They concluded that

ignition delay was independent of droplet size and decreased with increased oxygen

concentration.

6
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The use of rapid-compression machines for studying the autoignition character-

istics of homogeneous fuel-air mixtures was originated by Falk (Ref. 3B) in 1906.

Since that time devices of this type have undergone continuous development and have

been used by a number of investigators. The MIT Rapid Compression Machine (Ref. 38),

. developed in 1950, is the most advanced apparatus of this type. Ideally, a rapid-

compression machine compresses a mixture adiabatically and maintains it at its peak i

temperature and pressure for the duration of the delay period. Compression is accom-

plished by the rapid motion of a piston in a closed-end cylinder. Ignition is deter-

mined from the pressure-time record or from optical measurements. Compression should

he rapid, but without the formation of shocks; consequently, the minimum compression ::

time in the M_ITapparatus is approximately 6 msec. Therefore, short ignition delay
times (on the order of 5 msec) cannot be investigated without preliminary chemical

reaction during the last phase of compression. Also, measurement of the compressed

gas temperature is a problem for short delay times. _
l

...._ Leary, Taylor, Livengood, et al, (Refs. 36, 37 and 38) used the MIT apparatus

_'_ to determine the ignition delay time and the rate of pressure rise during auto-

i_ " ignition of several hydrocarbon fuels at various mixture strengths, compression

ratios, and inlet temperatures. It was reported that a minimum value of ignition

delay occurred at approximately stoichiometric mixture conditions and that the

delay time decreased with an increase in compression ratio and initial temperature.

/_ High-speed motion pictures of the luminous flame revealed that the reaction was not "

homogeneous, and that a large number of small bright spots first appeared locally

and then spread through the mixture. Schlieren photograph_ proved the existence of _i
temperature gradients in the compressed gas. A two-stage autoignition reaction for ._

iso-octane and n-heptane was also observed.

Many investigators have studied ignition delay in diesel engines and have _

correlated their results with various operating conditions and fuel properties.

Uncertainties regarding the measurement of temperature and, in some cases, pressure ,_

at the end of the delay period hampered these studies; however, in 1939 Schmidt ,_.

(Ref. 47) provided a correlation for the chemical delay in diesels which reduced

to the Wolfer equation for a constant volume bomb. More recently, Lyn and

Valdmanis (Ref. 45) and Henein and Bolt (Refs. 42 and 44) have performed comprehen- _

siva studies of the effects of cylinder pressure and temperature, inlet air temper-

ature, cverall fuel-air ratio, cooling water temperature and _ngine speed. They i

concluded that cylinder pressure and tempercture are the major factors affecting

the delay and that an increase in any of the above parameters reduced the ignition ,/

• delay time. However, continuously varying pressure, temperature, velocity, /
__ turbulence and fuel spray characteristics Frecluded an unambiguous determination of ::

the effects _f individual parameters. A_o, as is the case for rapid-compression i_
. machines, temperature gradients result iI_localized ignitions. '_

ORIGINALPAGE IS
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Oarner, et al., (Refs. 40 and Ml) measured the illumination delay in a slngle-
cylinder research diesel engine and reported that th__delay time decreased :/_th

increasing compression ratio until some critical ratio was reached, after which the
delay began to increase. Henein and Bolt (Ref. 44) have also reported a slight
increase in ignition delay with increased temperature at cylinder temperatures above
ii00 K. They suggest a possible mechanism for this phenomenon based on two-stage
combustion.

Shock tubes have been widely used to investigate the high-temperature

(T • 10O0 K) oxidation of low molecular weight gaseous hydrocarbons; however, there
is considerable scatter in the data reported. Some investigators have measured the

ignition delay using systems in which reaction was initiated by an incident shock

wave, and others have chosen systems in which reaction was initiated by a reflected
shock wave. The latter system offers the advantage of maintaining the reacting
mixture at a constant temperature (apart from wall losses) for a known period of

time; however, the initial temperature behind a reflected shock can usually only be
calculated to an accuracy of +50 K. In addition, both the type o_ diluent (e.g.,

air, nitrogen, argon, and helium) and concentration of diluent used have varied from
one investigator to another, as have the experimental criteria for definition of the
delay time (e.g., the rapid increase in•characteristic emission of free radial

species, a sudden rise in pressure or hea_ flux measurements, etc.).

The majority of shock-tube investigationshave been concerned with methane
because of the relative simplicity of its oxidation process as compared to those of

higher molecular weight hydrocarbons. Skinner, et al., (Ref. 53) summarized most
of the data for methane published prior to 1972 and compared them on the basis of a
correlation developed by Lifshitz, et al. (Ref. 51) which is of the form

= KeC/T [Ar]nl [CH4]n2 [02]n3

The data cover the temperature range ii00 to 2300 K at pressures varying from i to

I0 arm f_r mixture equivalence ratios of 0.5 to 8.0. For these conditions, the
induction times varied from i0 to 700 _sec.

A study of the autoignition of n-heptane and iso-octane behind reflected shock
waves was conducted by Vermeer, et al (Ref. 55), Induction time data were obtained
over ranges of pressure (i to 4 arm) and temperature (1200 to 1700 K). High-spee_ !

schlieren photographs derc,.strated the existence of two different modes of ignition--
strong ignition, character red by the formation of a blast wave, and mild ignition
wherein chemical reaction _s initiated simultaneously at _y different points. ":

The press"re-temperature limits defining the regions of mild and strong ignition
were determined. /

8
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Early continuous flow (steady-flow) investigations of the spontaneous ignition

characteristics of fuels injected into high-temperature, high-velocity airstreams

were conducted by Mullins (Ref. 63) in vitiated air at pressuze_ equal to or below

a i atm. The test apparatus consisted of an axisymmetric diffuser in which the

pressure, temperature and mixture flow rate were adjusted to maintain a stationary

flame front. High inlet temperatures were achieved by means of precombustion

upstream of the test duct. Fuel was injected into the airstream through conventional

atomizers and care was taken to localize the spray near the center of the duct in

order that the influences of the wall and boundary layer be eliminated. The point

of ignition was determined by direct visual observation through a series of windowc,

and the ignition delay time was considered equivalent to the residence time of the

fuel-air mixture between the point of injection and the axial position of the flame.

In this system, temperature and oxygen concentration _ere linked due to vitiation

heating, so that as temperature was increased, oxygen concentration decreased and

water concentration increased. However, vitiation without oxygen replenishment was

i_ shown to have a significant effect on ignition delay. Mullins reported that the
ignition delay of kerosene in vitiated air at atmospheric pressure is inversely

• proportional to the square of the oxygen concentration• (Subsequent investigations

(Refs. 20, 21, and 25) have confirmed that an inverse relationship exists between

i__ • ignition delay time and oxygen concentration for a variety of hydrocarbon fuels. )
In addition, t_e possible effects of combustion product contamination (e.g., increased

._L_._ , concentration of water vapor and various _ree-radical species) are still unknown.

Stringer, et al., (Ref. 66) measured the ignltion delay of several pure a_.d

distillate .hydrocarbon fuels in an oxygen-replenished vitiated airstream over a

range of pressures (30 to 60 ate) and temperatures (7T0 to 980 K). In this study, -

simulation cf combustion in diesel engines was achieved by using a pulsed diesel-

type rue_ injector situated normal to the airstream, and ignition was detected by

photoconductive cells. Of the various physical factors investigated, air _emperature

and pressure were found to exert the major i,,fluence on the ignition delay, while

velocity, fuel/air ratio, and turbulence intensity had a negligible effect. The

ignition delay data were correlated using an Arrhenius-type expression similar to

- Wolfer's (Ref. 30) and in addition, an alternative expression of the form •

i
i i i

T = pn(BT A)

where A, B, and n are constants which were determined for several of the more widely
used fuels, m

OF POORQUAGIN
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The experimental techniques pioneered by Mullins were later adopted and improved

upon by Taback (Ref. 68) and more recently by Spadaccini (Ref. 6_). Taback conducted "_ !

an investigation of the autoignition characteristics of JP-4 in vitiated air at

ambient pressures of 17 to 28 atm and temperatures of 700 K to 900 K. The auto-

ignition te_t section walls were water cooled s_ud, like Mull_ns, te_ts were conducted

using a centrally-Gocated sp:ay-type inJector_ Safety considerations precluded

direct visual observ_.t.'onsof the flame front position; thersfore, provision was

made for indirect determination of the point of ignition by installing photoconduc-

tive cells in the test duct at a multitude of axial locations. In addition,

evaluations of (1) the influence of walls and the resulting boundary layer, (2)

the flashback potential of a transient ignition source, and (B) the flameholding
'I

potential of wake-producing surface imperfections on ignition delay were performed

_.. over a limited range of test conditions and for a specific premixing duct geometry, i

Spadaccini (Ref. 65) continued the work st_rted by Taback and using essentiall_r

the same test apparatus investigated the autoignition characteristics of JP-4, No. 2

fuel oil, and No. 6 fuel oil in dry unvitiated air at temperaturea in the range

670 K to 870 K and at pressures in the range 6.8 atm t,_ 16. B _tm. _ne a'r was

heated by means of an electrical resistance-type heate_ and the pressure was

regulated by a remotely operated throttle valve. The effects of a number of physical

factors, including air pressure and temperature, fuel temperature and concentration,

-" and ._ "tial spray characteristics (e.g., droplet size and size distribution), upon

the ignition characteristics were evaluated. Ignition delay times were shown to

iii_/_ vary according to an empirically determined relat±onship which was also similar ir "

form to Wolfer's. in addition, the possible influence of the flame front on _ne

magnitude of the delay period, e.g., by radiant heating or alteration of the

pressure distribution within the diff_:ser, was evaluated and it was concluded that

measurements were unaffected by its presence.

A significant deficiency of the preceding continuous flow types of te_t

apparatus is the difficulty in "'°_-.__,g them to evaluate the importance of the local _

i fuel-air mixture ratio on autoignition. Continuous combustion devices, such a_ those ;
described above, preclude the measurement of delay time for uniform fuel-air mixtures •

because the wall boundary layer provides a path for the upstream propagation of flame

from the autoignltion point to the in_ector (thus obscuring the point of ignition).

The advantages of this apparatus, on the other hand, are (i) that it accurately

simulates autoignition phenomena occurring as r rest,It of spray injection and (2)

that it permits rapid data acquisition, since the flame is continuously present and

its axial position, and therefore: del_v period can be _ontinuously varied by regu-

lation of the flow variables.

The route to precluding some of the deficiencies of the work of Spadaccini and

Taback was incorporated in a steady-flow te_t app_atu_ developed bj Mestre and

Ducourneau. It is described in Refs. _8 and 62 and utili'_,er_a premlxing-type injector

10
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to investigate the dependence of ignition delay on the local equivalence ratio of

• kerosene-air mixtures. Experiments were performed in a h2-mm dia cylindrical tube

at pressures in the range of 5.4 atm to 12 atm and over the temperature range 720 K

_:, to _375 K. The flow velocity was fixed at approximat-_ly 70 m/sec by means of a

!_j- - soni_ nozzle installed at the tube exit, and the residence time was variea by inter-
_:_/. changing four tubes of different lengths. The test procedure consisted of gr_dually

• increasing the inlet air temperature until autoignition was visually detected at the

nozzle exit at which time the test was abruptly terminated. The ignition temperatures

of mixtures in the equivalence ratio range 0.5 to 8.0 were_measured for fixed

residence times of approximately 3 msee, 6 msee, 7 msec and 12 msee. (The constant

velocity constraint imposed by the use of a sonic nozzle restricted the variation of

residence time to a fixed number of values. ) Their data indicate that fuel-air

mixture ratio is an important factor affecting autoignition; minimum ignition tem-

peratures were obtained for an equivalence ratio of 3.0 at 5.h atm and for an

equivalence ratio of 1.0 at ii arm.

More recently, Marek et al. (Ref. 61) have studied the auto_gnition and flashback

characteristics of lean mixtures of Jet-A fuel in air at temperatures in the range

550 K to 700 K and pressures in the range 5.h atm to 25 atm. The autoignition test

apparatus consisted of a 10.2 cm dia cylindrical "prevaporizing/premixing flame tube:',

a single element eontrastream fuel injector, and a perforated-plate flameholler located

66 cm downstream of the fuel injector. Upon establishing a predetermined pressure and

temperature within the flame tube, the fuel flow rate was slowly increased until
@

autoignition occurred and was indicated by _ thermocouple positioned 1 cm upstream of

the flameholder. The ignition delay time was defined as the residence time between

the injector and the flameholder, as it related to the instantaneous pressure and

temperature. Ignition delays in the range 15 msec to lO0 msec were measured and it

-__ was concluded that they varied inversely with the ambient pressure. In addition,

prelame reactions, similar to cool-flame phenomena, were reported and flashback

velocities of 35 m/sec to 65 m/sec were measured at 5.6 atm and 610 K and 700 K. <

In the latter two test arrangements, as in all others which strive to produce

mixture homogeneity, the measurement of delay times may be affected by chemical

reactions which can occur in the boundary layer along the walls. Neither of the

previous investigators (Refs. 61 and 62) make mer.tion of the occurrence of ignition

and combustion in the boundary layer even during tests in which the tube wall was

externally heated to the inlet air temperature; however,• it appears that autoignition ii

and its precursors may occur in the slower moving (i.e., long residence time) mixture
• in the boundary layer in a situation in which the wall temperature is at or near the

inlet air temperature. Also, flow disturbances, such as those produced by large- _

size fuel injectors or high-blockage flameholders, should be avoided since they may /_

creat_ local regions of flow recirculation _nd, therefore, high residence time.

11
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_V_<|_'--_4-J It is clear from the above summary that there is considerable disagreement

_!_|i'_'_| among the previous investigators regardin_ the imDortance of mixture ratio on
-_i; I autoignition. Some have reported no effe_t (Refs. 30 and 63), others have observed

_i!I a minor effect (Refs. 38, 45 and 66) and still others have found a major effect

(Refs. 58 and 62). These apparent inconsistencies underscore the previous

admonition that existing data need to be interpreted carefully in the light of the

_I test apparatus and the methods used for their determination. The achievement of a

_i uniform mixture is prerequisite for an evaluation of the importance of fuel-air

• _" ratio; therefore, Ikzel-air mixture sampling tests should be conducted to obtain a

quantitative indication of the extent of vaporization and the degree of uniformity

of the fuel-air mixture produced by the injector. The mixture quality, or the

_S degree of vaporization achieved prior to the onset of autoignition, may have a sig-

nific' nt influence on the magnitude of the delay time and, therefore, ignition delay

data may not be correlated solely on the basis of overall equivalence ratio.

Finally, ignition delay data for typical gas turbine and diesel fuels which has
been reported in several of the investigations discussed above are summarized and com-

pared in Fig. 1. The discrepancies between the magnitude of the delay times measured

_ by the various investigators are apparent, particularly at high ambient pressures,

as is the disagreement regarding the rate of change of delay time with increasing "

pres,_ure. A portion of these differences may be attributed to variations in fuel
composition, stemming from broad fuel specifications and poor ducumentation of fuel _

properties. However, differences in data report-.d for a particular fuel are often _i
larger than differences measured between various grades of fuel (cf., Refs. 65 and

66). Therefore, it is likely that the major variations originate from differences

in the experimental apparatus and methods.

 978oo825 -o 5



,i
,1

"2' i

EXPERIMENT DESIGN AND TEST PROCEDURE

It can be concluded from the preceding review of autoignition research that

• parametric autoignition data pertinent to gas turbine engines can best be acquired

by conducting a continuous flow experiment using dry, unvitiated air, and providing

independent control of pressure, temperature, and mass flow rate (therefore, resi-

dence time). In addition, a critical experiment should minimize flow disturbances

and wall effects, and provide for a determination of the fuel-air mixture distribu-

tion and the degree of droplet vaporization. These criteria served as a basis for

formulating the technical approach from which the experiment design was evolved.

The conceptual design and installation of the autoignition test apparatus which

was developed in the present program is shown in Fig. 2. It consists of (i) an

electrical resistance-type air heater, (2) an inlet plenum and flow straightener,

(3) a specially-designed premixing-type fuel injector for generating a relatively

uniform fuel-air distribution, (h) a cylindrical mixer/vaporizer section comprising _

_cveral flanged spool pieces to permit length (residence time) variation over the

range 2.5 cm to 150 cm in increments of 2.5 cm (5) an expander section which provides

a sudden expansion at the autoignition station and a water quench, (6) a scavenger _-
afterburner, and (7) a remotely-operated throttle value located in the exhaust ducting

Details of the mixer/vaporizer and expander sections are shown in Fig. 3. The inner

@ surface of the mixer/vaporizer sections are relatively smooth and free of wake-produc-

ing imperfections as a result of internal machining and the use of alignment dowels.

Theoretical analyses of the need for wall cooling to preclude the possibility of

ignition in the boundary layer were not able to conclusively demonstrate that cooling

would not be required, therefore the design provides the capability for internal wall

_ cooling; however, this feature is optional an_ it should be noted that the inner wall
has sufficient strength to permit uncooled operation. Uniform inlet velocity profiles

are assured by flow baffles and straight sections, and the inlet temperature and pressure _;

.... are measured using fixed probes.

Normal operating procedure consists of establishing a prescribed condition within

the test duct and gradually increasing the air temperature or pr ssure until auto-

ignition occurs at the exit of the mixer/vaporizer section. This continuous test _

procedure ensures an accurate determination of the minimum conditions for autoignition.

The ignition delay time is equivalent to the residence time of the fuel-air mixture •

between the point of injection and the axial position of the flame, and it is com-

w. , puted based upon the average flow velocity. The occurrence of autoignition is deter- _
mined indirectly using photodetectors and a differential pressure transducer to make

simultaneous measurements of the illumination and pressure-rise delay times. Upon _:

ignition the test is terminated abruptly by shutting off the fuel flow and thereby _

purging the rig with inlet air flow. This test arrangement permits infinite and

independent variation of each of the important experimental variables, i.e., pressure, _i

temperature, ve_._ity, residence time and fuel-air ratio within a fixed range of _

test conditions. :!

.______ ORIGrt_ALPAGE IS

%

1S

97800825-0 6



r [_ _ LL

A survey of optical instrumentation suitable for detecting the presence of _i'_•

i_!J luminous _nd nonluminous flames and compatible with the test hardware resulted _n the ' Ii
selection of EG&G Model HUV-IOOOB si]icon photovoltaic amplifier/photodiode combinations _

for _Isein this program. The detector has a wide spectral range (2000A to 11500 _)o

high responsivity (gain), nanosecond rise time, and linearity over a wide dynamic •

range. Photodetectors of this type were installed in high-pressure packing

gl_nd assemblies (see Fig. 3) and located at several positions in the test rig. They

were isolated from the flow within the test rig by small glass windows incorporated

into the mounting assemblies. The ability of the photodetector system to detect

luminous flame and provide a sufficiently hi@, output signal (adequate gain) and

sufficiently rapid response (less than 0.I msec rise time) was verified experimentally

by measuring the response characteristics of the system to illumination from a propane-fueled burner and a high-frequency flashing light source (stroboscope).

A thermocouple is located at the exit of the mlxer/vaporizer to provide a backup
indication of ignition, identify conditions at which exothermlc chemical reaction is

initiated (including cool-flame phenomena), and indicate the temperature of the mixture

at the onset of autoignition. Also, provision is made to permit use of a traversing,

liquld/v_por phase-discriminating sampling probe to isokinetically sample the flow. By

evaluation of the hydrocarbon content of the samples, measurements of the extent of
J

vaporization and the radial fuel-a_r concentration profile at the exit of the test

'_ section are obtained; thereby the mixture uniformity is evaluated. Since the facility

afterburner, located in the exhaust ducting, is a continuous ignition source and be-
cause autoignition will normally be initiated at the axial locahion within the sudden-

expansion section, the step region is deluged with water to eliminate any path by

which the flame may propagate upstream from the afterburner into the mixer/vaporizer

sections (e.g., via the wall boundary layer and/or the recirculatlon zones). As

an added precaution, thermocouples and photodetectors are used to monitor the step

region and identify conditions which result in flame stabilization.

The generation of a uniform mixture is a prerequisite for the evaluation of the

importance of fuel-air ratlo; therefore, techniques for obtaining rapid vaporization

__ and mixing with a minimum flow disturbance were studied and a candidate fuel injector

was fabricat_ and tested. The distributed-source injector, shown in Fig. h,is

designed to achieve efficient atomization as a result of high shear forces which are

created by (a) the impingement of high-velocity fuel Jets on a stationary splash

_ plate and (b) the interaction of the high-velocity airstream and the liquid film
issuing from the splash plate. Rapid mixing is also anticipated as a consequence of

the large n_iber of fuel injection sites. Flow disturbance and blockage (and therefore

pressure loss) are minimized by the use of small-diameter hypodermic tubing which is

appropriately sized to reduce internal friction losses and is sufficiently strong to

withstand the aerodynamic loading. The injector can be rotated with respect to the ,

airflow to effect either costream or contrastream injection. When facing upstream,

as shown in F_g. h and as used in this program, a low convective heat transfer rate

to the fuel injector tubing is ensured as a result of the shielding provided by the

splash plate and the backwash of fuel over its outer surface. The fuel inJecticn

14
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temperature is continuously monitored using fine-wire thermocouples. Plugging of

the injector orifices, due to fuel pyrolysis and/or coking, is avoided by flowing :

water during start-up and shutdown. Furthermore, the injector is designed for

operation at pressure levels sufficiently high to render it insensitive to combustor

u pressure oscillations.

• EXPERIMENT VERIFICATION

j .An experimental verification test program was conducted to demonstrate the per-

formance capabilities of the autoignition test apparatus and to verify that the impor-

l- tant test variables can be controlled in a manner such that quantitative results can

be obtained. Tests were conducted using air flow rates up to 1.0 kg/sec, pressures up _,
to 30 atm, and temperatures up to 900 K. i!

_ _

Qualification of the experimental apparatus and operating techniques was achieved ,_

by successful acquisition of data through a limited number of tests over the specified _

wide range of test conditions. The verification tests also served to qualify the _

' design and operation of the distributed-source fuel injector, although further testing _-

• will be required to document the degree of mixture uniformity achieveable as a func- .,
tion _f mixer/vaporizer section length.

Prior to initiating the test,program, the uniformity of the inlet airflow was veri- _-

fled by radially traversing a pitot-static probe across the entrance of the mixer/ _

vaporizer section. The maximum deviation of the local velocity from the average _

velocity was + 8 percent. The results of these measurem ,ts together with an estimate :_

of the overall experimental error suggest that the uncertainty in the determination _

of igni'i_n delay time was less than 20 percent. Tests were then c_nducted using _

Jet-A fuel (see T_ble 2 for typical properties) over ranges of inlet air temperature ..,:

and pressure up to 900 K and 30 atm, and the ignition delay times were determined for :_

several fuel-air mixture ratios. The matrix of tes_ conditions and the test results i_

are summarized in Table 3, The experimental data a__ compared to relevant existing ....
?

- ignition delay data for Jet-A in Fig. 5. (Addition_l data reported by other invest- _-

igators for other fuels and similar test conditions were presented in Fig, I.) There _i_
.' is general agreement between the measured and existing data, both with respeot to

:I the magnitude of the ignition delay times and the trends with increasing pressure _
and temperature (i,e,, ignition delay time decreases with increasing temperature and .'

_ressure). Note that in this series of verification tests several of the important _

experiment_! variables were changed simultaneously and, therefore, the data cannot _i:_,

, be correle._ed by a single curve on a delay time vs pressure plot, _,

Measurements made a_ 30 atm indicate a shorter delay time than is predicted _",°

using existing data and empirical correlations (Refs. 61, 65 and 66) and suggest the _:_

ORIGINALPAG •
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possibility that upstream flame propagation (flashback) may have occurred at the low

_._,_ free-stream velocity (18 m/sec). Consequently, to reduce the likelihood of flash- _
L_| back, future tests will be conducted at higher free-stream velocities by increasing

_' the minimum airflow rate to 1.0 kg/sec.

"
The data obtained also provide an indication that the ignition delay time may i

be relatively sensitive to fuel-air ratio, as was reported by Mestre and Ducourneau

_ (Ref. 62). For example, da_a acquired in tests conducted at constant inlet tempera- !ture (T = 700 K) and with a mixer/vaporizer section length of l_0 cm, (which is suffi-

......_i_ ciently long to ensure mixture homogeneity at the autoignition station) indicate that

the ignition delay t_me measured at P = i0 a_m and _ = 0.6 was approximately equal

to the delay time meesured at P = 20 atm and _ = 0.3. This result is contrary to the _

anticipated inverse_proportionality of ignition delay and ambient pressure (i.e.,

• T _ p-n). This apparent sensitivity to _'ael-air ratio emphasizes the need for rapid _

mixing and results in the requirement that reasonably uniform fuel distributions be _.

demonstrated in future tests.

?

CONCLUDING REMARKS _

The design and operating features of an autoignition test apparatus which

permits independent variation of mixture pressure, temperature, flow rate, fu_l-air ._

ratio and wall cooling rate have been demonstrated through tests at a limited number _

of operating conditions. It is anticipated that the test apparatus dev_loped in this

program will be used in subsequent programs to (i) map the autoignition characteris-
tics of various liquid hydrocarbon fu_is, including Jet-A, JP-4 and No. 2 diesel

- oil, and (2) determine the effect of chemical and physical #roperties of fuels

including blends and/or pure compounds, on autoignition. : _%

_L
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T_P_C_P_OP_TI_SOF_Q_IO_S__-__L

Specific Gravity 0.809 (311 K)

Avg. Hydrogen/Carbon Ratio 1.98

Viscosity 1.7 x 10-6 m2/sec (311 K)

Surface Tension _-_.9dynes/cm (311 K) _

Initial Boi]ing Ft. 420 K

°i

Final Boiling Ft. 561 K

Flash Pt. 329 K .

Heating Value h3,000 kJ/kg

Avg. Molecular Wgt. 170
t ,,

Stoichiometric Ratio (by wgt). 0.068

Critical Pressure 18 atm

_" Critical Temperature 656 K

Specific Heat at Constant Pressure 2.13 kJ/kg C (311 K)

--
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